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Abstract

We consider the merit factor of binary sequences obtained by appending an initial fraction of
an m-sequence to itself. We show that, for all sufficiently large n, there is some rotation of each
m-sequence of length n that has merit factor greater than 3.34 under suitable appending. This
is the first proof that the asymptotic merit factor of a binary sequence family can be increased
under appending. We also conjecture, based on numerical evidence, that each rotation of an
m-sequence has asymptotic merit factor greater than 3.34 under suitable appending. Our results
indicate that the effect of appending on the merit factor is strikingly similar for m-sequences as
for rotated Legendre sequences.

1 Introduction

A binary sequence A of length n is an n-tuple (ag, a1, ..., a,—1), where each a; takes the value —1
or 1. The aperiodic autocorrelation of the binary sequence A at shift u is defined to be

n—u—1

Ca(u) := Z ajajy, foru=20,1,...,n—1,
§=0

and, provided that n > 2, its merit factor is

n2
P = T awr

The merit factor is important both practically and theoretically. For example, the larger the
merit factor of a binary sequence that is used to transmit information by modulating a carrier signal,
the more uniformly the signal energy is distributed over the frequency range; this is particularly
important in spread-spectrum communication [BCH85]. The merit factor of binary sequences is
also studied in complex analysis, in statistical mechanics, and in theoretical physics and theoretical
chemistry (see [Jed05] for a survey of the merit factor problem, and [Jed08] for a survey of related
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problems). The general objective is to understand the behaviour, as n — o0, of the optimal merit
factor F'(A) as A ranges over the set of all 2" binary sequences of length n.

The only non-trivial infinite families of binary sequences for which the asymptotic merit factor is
known are: Legendre sequences, m-sequences, Rudin-Shapiro sequences, and some generalisations
of these three families. The largest proven asymptotic merit factor of a binary sequence family is 6,
which is attained by rotated Legendre sequences (see Theorem 13).

There is considerable numerical evidence that an asymptotic merit factor greater than 6 can
be achieved [KN99], [KP04], [BCJ04]. The idea of [BCJ04], based on earlier work [KN99], is to
start with a near-optimal rotation of a Legendre sequence (which has asymptotic merit factor close
to 6) and append an initial fraction of the sequence to itself. Based on partial explanations and
extensive numerical computations, [BCJ04] exhibits a binary sequence family that apparently has
asymptotic merit factor greater than 6.34, although a proof for this has not yet been found.

In this paper we apply the idea of sequence appending to m-sequences and prove, for the
first time, that the asymptotic merit factor of a binary sequence family can be increased under
appending. The asymptotic merit factor of all m-sequences is known to equal 3 (see Theorem 3).
We show that, for all sufficiently large n, there is some rotation of an m-sequence of length n that
has merit factor greater than 3.34 under suitable appending. Our analysis makes critical use of
the “shift-and-add” property of m-sequences (see Lemma 1 (ii)). We also conjecture, based on
numerical evidence, that each rotation of an m-sequence has asymptotic merit factor greater than
3.34 under suitable appending. Our results reveal that the effect of appending is strikingly similar
for m-sequences as for rotated Legendre sequences; this is discussed in the final section of the paper.

2 Notation

In this section we introduce further definitions and notation for the paper.

Given a binary sequence A = (ag,ai,...,a,—1) of length n, we denote by [A]; the sequence
element a;. Let A = (ag,a1,...,an—1) and B = (bg, b1, ...,bn—1) be binary sequences of length n
and m, respectively. The concatenation A; B of A and B is the length n+m binary sequence given

by
a; for0<j<n
[A; B]j := {b] ; .
j—n forn < j<n+m.

Let r and ¢ be real numbers, where ¢ € [0, 1]. Following [BCJ04], the rotation A, of A by a fraction r
of its length is the binary sequence of length n given by
[Ar]j = Q(j+|rn|) mod n for 0 < j < n,

and the truncation A’ of A by a fraction t of its length is the binary sequence of length |tn| given
by

[A"); :==a; for0<j< [tn].
We also use the standard definition of the periodic autocorrelation of the binary sequence A =
(ag,ai,...,an—1) at an integer shift u, namely

n—1
Ry(u) == Zaja(j—i-u) mod n- (1)
=0



3 Properties of m-Sequences

This section provides background and some required results on m-sequences.
Let GF(2™) be the finite field containing 2™ elements, and let Tr : GF(2"™) — GF(2) be the
absolute trace function on GF(2") given by

m—1 )

Tr(z) := Z 27,

5=0
An m-sequence Y = (yo,y1,...,Yn—1) of length n = 2™ — 1 (for m > 2) is defined by
yj = (=)™ for0 < j<n (2)

for some primitive element o of GF(2™) and some nonzero element § of GF(2™). By writing 3 as
a power of «, it is seen that different choices for 8 correspond to different rotations of the sequence
defined by a particular 5. This implies that each rotation of an m-sequence is an m-sequence,
as noted in Lemma 1 (i) below. For each n = 2™ — 1, there are exactly n¢(n)/m distinct m-
sequences [GGO05, Cor. 4.7], where ¢ is Euler’s totient function (there are n choices for (3, and
¢(n)/m choices for a that arise by taking one representative of each conjugacy class of the ¢(n)
primitive elements of GF(2™)).

We shall require the following properties of m-sequences (see [GG05] for a detailed modern
treatment; these properties were originally derived using an alternative definition of m-sequences
involving a linear recurrence relation [Gol67]).

Lemma 1. Let Y = (y0,y1,--.,Yn—1) be an m-sequence of length n = 2™ — 1, as in (2).

(i) The rotated sequence Y, is an m-sequence for every real r.

(ii) ([Gol67, p. 44, Thm. 4.3]) There is a permutation o of {1,2,...,n — 1}, determined by the
primitive element o in (2), for which

Y5Y(j+u) mod n = Y(j+o(u)) mod n Jor1<u<nand0<j<n. (3)

(iii) ([Gol67, p. 45]) The periodic autocorrelation of Y satisfies

Ry (u) =
v () —1 otherwise.

{n foru=0 (mod n)

Given an m-sequence Y of length n, Sarwate [Sar84a] computed Ex[1/F(Y}/,)] (throughout
this paper, E; denotes expectation over k € {0,1,...,n — 1}, where all such k occur with equal
probability).

Theorem 2 (Sarwate [Sar84al). Let Y be an m-sequence of length n = 2™ — 1. Then

1 _(n—=1)(n+4)
B |:F(Yk/n)] B 3n?



As a consequence, there is some rotation of an m-sequence Y of length n having merit factor
at least 3n2/((n — 1)(n + 4)), which asymptotically equals 3. This suggests the possibility that a
particular rotation of an m-sequence has asymptotic merit factor greater than 3, but Jensen and
Hgholdt [JH89] showed that this is impossible.

Theorem 3 (Jensen and Hgholdt [JH89]). Let Y be an m-sequence of length n = 2™ — 1. Then

lim F(Y)=3.
n—-aoQo
(The limit in Theorem 3 is taken over all n of the form n = 2™ — 1 (for m > 2) and, for each such
n, one of the ng(n)/m different m-sequences is selected. The theorem states that the limit of F/(Y)
is always 3, regardless of which m-sequence is chosen for a particular n.)
We shall need an upper bound on the aperiodic autocorrelation of truncated m-sequences. Given
an m-sequence Y of length n = 2™ — 1, Sarwate [Sar84b]| established that

ICy(u)| <14 2vVn+1log (L) for1<u<n. (4)

We will now show that Lemma 1 (ii) implies that the same bound also holds for truncated m-
sequences.

Lemma 4. Let Y be an m-sequence of length n = 2" — 1, and let £ be an integer satisfying
2<¥¢<n. Then
|Cyem(u)] <1+ %\/n + 1log (47") for1 <u</.

Proof. Let a be the primitive element of GF(2") appearing in the definition of Y = (yo,y1, ..., Yn—1)
given in (2), and let o be the permutation determined by « satisfying (3). Now pick an integer u
satisfying 1 < u < ¢. Applying Lemma 1 (ii) twice, we find that

l—u—1

Cyem() = > YiYjtu
=0

l—u—1

= Z Y(j+o(u)) mod n
7=0
l—u—1

= Z Y(j+o(u)—o(n—_L+u)) mod n Y(j+o(u)—c(n—~f+u)+n—~L+u) mod n
7=0

= Cy,,,(n = +u) for k=o0(u) —o(n — 0+ u).

Since Y}y, is an m-sequence by Lemma 1 (i), the result follows from (4). O

4 An Existence Result on the Merit Factor of Appended
m~-Sequences

In this section we prove a generalisation of Theorem 2 for appended m-sequences. We then conclude
that, for all sufficiently large m, given a primitive element o of GF(2"™) there exists an m-sequence
Y of length n = 2™ — 1 of the form (2) and a real number ¢ such that F(Y;Y?) > 3.34.

We begin by proving the following lemma on sums of elements of an m-sequence. This generalises
to all nonnegative integers 0 a result previously given by Lindholm [Lin68, Eq. (6e)] for § < n.



Lemma 5. Let Y = (yo,y1,-.-,Yn—1) be an m-sequence of length n = 2™ — 1. Given nonnegative
integers k and 9, define

5—1
Sy(k,(S) = Zy(k+j) mod n* (5)
=0

Then
nEx[(Sy (k, 5))2] =dn—-350+1)+an+1)(20 —n(a+1)),

rs;lj‘

n

Proof. From the definition (5) of Sy (k,d) we have

where a = |

n—146-16-1
nEi[(Sy (k,))*] = Y(k+4) mod n Y(k+j) mod n
k=0 i=0 j=0
§-15-1
= Ry (i — j)
=0 j=0

by rearranging the summation and by the definition (1) of the periodic autocorrelation. Further
manipulations give

0—1
nBy((Sy(k,0)°] = > (6—1[v]) Ry(v)
v=—(6—1)
6—1
=0Ry(0)+2) vRy(5 —v)

v=1

since for every binary sequence A we have R4(v) = Ra(—v) for all v. Now from Lemma 1 (iii) we
find that

0—1 0—1
nE[(Sy(k,0)%] =on—2) v+2n+1) > v
v=l 'uztsl(};cl)d n)
6—1
=0n—6(0-1)+2(n+1) > v (6)
UE(;?;id n)
Writing a = L‘Sn;lj, we have
0—1 a
v=">) (0 —jn)
'UEJ’L(};E)C[ n) J=1
=ad — 3na(a + 1),
which after combination with (6) proves the lemma. O



We now apply the preceding lemma to prove the following result, in which the sequence
Yi/n; (Vs /n)g/ ™ is obtained by rotating the m-sequence Y by k elements and then appending the
resulting first ¢ elements.

Theorem 6. Let Y be an m-sequence of length n = 2™ — 1, and let £ be an integer satisfying
0<¥¢<n. Then

E
g 3n(n +£)?

1 O+l -1)(n—20+4)+12(n+ 1)((4 — 1)
F(Yye/n; (Yiyn)t™)

Proof. Let a be the primitive element of GF(2™) appearing in the definition of Y = (yo,y1,- -, Yn—1)
given in (2), and let o be the permutation determined by « satisfying (3). Then, by Lemma 1 (ii),
for each u satisfying 1 <u <n + ¢ and u # ¢, we have

i
L

CYk/n;(Yk/n)Z/" (n + £ — u) - Y(k+7) mod n Y(k+j+n+l—u) mod n

where 7(k) := k+ o((n + ¢ — u) mod n) and Sy (k,0) is defined in (5). We also have

using the convention that C4(n) = 0 for all binary sequences A of length n. Now, since k +—
7(k) mod n is a permutation of {0,1,...,n — 1} for each u, (8) and application of Lemma 5 to (7)
give
nl? for u =/
nEy [(Cyk/n;(yk/n)z/n(n + 0 — u))Q} =qun—u+1) for 1 <wu<nandu#/
un—u+1)+2n+1)(u—n) forn<u<n+/.

We therefore obtain

E n(n + 0)° —nilnE {(C’ (n+€—u))2]
2Oy () |~ g T L
n+l—1 n+4—1
= Zu(n—u+1)+n€2+ Z 2(n+1)(u—n)
u=1 u=n+1
u#l

=in+0)n+L—1)(n—20+4)+2(n+ 1) —1),

proving the theorem. O



Notice that Theorem 2 arises as the special case £ = 0 of Theorem 6. It follows from Theorem 6
that, for every m-sequence Y and integer ¢ satisfying 0 < ¢ < n, there exists an integer k such that
3n(n + £)?
n+0)n+0—-1)(n—20+4)+12(n+1)0(l—1)

Writing t = f; , taking the infimum limit as n — oo, and using Lemma 1 (i), we obtain the following

asymptotic result.

Corollary 7. Let t € [0,1] be a real number. For each integer m and for each primitive element
a of GF(2™), there exists a nonzero 3 € GF(2™) such that the m-sequence Y of length n = 2™ — 1
defined in (2) satisfies

3(141)2
liminf F(Y; YY) > o0 t0°
n—>00 1492 —2¢3

In particular,

liminf F(Y;Y") > 3.3420653 for t = 0.1157494.
n—-aqoQo
The second statement in the corollary implies that, for all sufficiently large m, given a primitive

element o of GF(2™), we can pick an m-sequence Y of length n = 2™ — 1 of the form (2) such that
F(Y;Y*) > 3.34 for t = 0.1157494.

5 A Conjecture on the Merit Factor of Appended m-Sequences

The results of the previous section imply that, for each sufficiently large n = 2" — 1, we can choose
an m-sequence Y of length n such that the maximum of F(Y;Y?") over t € [0,1] is greater than
3.34. In this section and in the following section we shall present compelling evidence, and therefore

conjecture, that

. 3(1+1)?
Y A
nhmooF(Y,Y )_1—0-9752—2753 for t € [0,1), (9)

regardless of the choice of the m-sequence Y for each particular n. Subject to this conjecture, the
asymptotic maximum of F(Y;Y?) over t € [0,1) is approximately 3.34, regardless of the choice of
the m-sequence Y for each particular n.

We shall first prove the following theorem, which allows us to replace the conjecture (9) by
a simpler one. A result similar to Theorem 8, namely [BCJ04, Thm. 6.4], is known to hold for
Legendre sequences.

Theorem 8. Let Y be an m-sequence of length n = 2™ — 1, and let t € (0,1) be a real number.
Then, as n — o0,

F(Yl; ve) ™2 <1 it) <F<;t> " 1) " GIE)Z F<<Y1>H>‘




Proof. Write Y = (yo,%1,---,Yn—1) and £ := [tn]. By definition we have Y = (yo,v1,...,¥r_1)-
Now define Y = (y¢, Yo41,- -+, Yn_1), s0 that Y = Y4, Y’. Then by the definition (1) of the periodic
autocorrelation we have

Ry (u) 4+ Cy+(u) for 1 <u</?
Ry () foru=14¢
Cy.yit(u) = Ry (u) — Cyr(n—u) forl<u<n
14 foru=mn
[ Cyt(u—n) forn <u<n+/0.
In what follows, we will assume that n is large enough such that 2 < ¢ < n — 2, in which case all of
the above ranges for u are nonempty. Since by Lemma 1 (iii), Ry (u) = —1 for 1 < u < n, we then
obtain
n+£4—1
(n+ 0 'S )
2F(Y; YY) = ; [CY;Yt(U)]
-1 n—f—1 -1
=D [Cye(w) =12 +1+ > [Cyr(u) + 12+ 2+ [Cyr(u)]?
u=1 u=1 u=1
£2 (TL - 6)2 ) /—1 n—~_0—1
= —1-2 2 r(w). 1
7y T arwy TOTT uzlcyt(uw uzl Cy(u) (10)

Now by comparing Y’ with (Y;)'~!, we find that

v (Y-t if tn is integer
(Y=t y,_1 otherwise.
This gives
|Cyr(u) = Crypyi—t(u)| <1 for 0 <u<n—4¢ (11)
with the convention that Cy(s) = 0 for each length s binary sequence A. Thus, since Y; is an

m-sequence, we conclude from Lemma 4 that the last two sums in (10) are O(n% logn) as n — oo.
Also from (11) and Lemma 4 we find that, as n — oo,

(n—0% _ (|(1-t)n])*
2F(Y)  2F((Yi)1)

+ O(n% logn).

Hence, since ¢ ~ tn, we obtain from (10) the asymptotic relationship

(14+1)2n?  t2n? (1 —1t)%n?
2F(v;Yh) T F(YT) T 2F((,) )

+ t2n2,
as required. O

Theorem 8 and Lemma 1 (i) imply that, in order to find the asymptotic merit factor of an
appended m-sequence Y;Y! for all t € (0,1), it is sufficient to know the asymptotic value of
t2/F(Z?!) for all m-sequences Z and for all ¢+ € (0,1). Numerical computations suggest that, for
each long m-sequence Y, the curve 1/F(Y?) for t € (0,1] can be fitted very well by a linear function.
This leads us to the following conjecture.



Conjecture 9. Let Y be an m-sequence of length n = 2™ — 1, and let t € (0, 1] be a real number.
Then, lim,, o (t2/F(Y?)) is well-defined and

. t* 2 2
We now use Theorem 8 to show that the conjectured asymptotic form (9) of the merit factor
of appended m-sequences is implied by Conjecture 9.

Corollary 10. Let Y be an m-sequence of length 2™ — 1, and let t € [0,1) be a real number. Then,
subject to Conjecture 9,

3(1+t)2
lim Py vt = 0D
n—-00 1+ 9¢2 — 2¢3

Proof. The case t = 0 follows directly from Conjecture 9 (and is known to be correct by Theorem 3).
Subject to Conjecture 9 we conclude from Theorem 8 that, for ¢t € (0, 1),

. 1+1t)?
lim F(Y;Y?) = ( ;
n—o0 22(1 — 2t + 1)+ (1 —)2(1 — 2(1 — 1))
which proves the corollary. O

Under the assumption that Conjecture 9 is correct, elementary calculus gives the maximum
asymptotic merit factor achievable by appending to m-sequences.

Corollary 11. Let Y be an m-sequence of length n = 2™ — 1, and assume Conjecture 9 to be
correct. Then the mazimum of lim, . F(Y;Y?") over t € [0,1) is given by

; 3(1 + £)?
lim F(Y;Y = &
n—o00 1+ 9¢2 — 2¢3

where t is the solution of
B34+32—-9t+1=0 for0O<t<l1.

Approximately we have

lim F(Y;Y?) ~3.3420653 and £~ 0.1157494.

n—:aoQo

6 Evidence in Favour of Conjecture 9

Conjecture 9 implies that, given an m-sequence Y of length n = 2™ — 1,
2

E, [

F((Yim)")

This asymptotic relation is implied by setting ¢ = tn and letting n — oo in the following result,
which therefore provides evidence in favour of Conjecture 9.

] ~t*(1—2t) forte (0,1] as n — oo. (12)

Proposition 12. Let Y be an m-sequence of length n = 2™ — 1, and let £ be an integer satisfying
2<¥¢<n. Then

Ex

F((Yiyn)tm) 3nd

1 ]:(£—1)(3n—2£+4)



Proof. The proof is similar to that of Theorem 6. Let a be the primitive element of GF(2™)
appearing in the definition of Y given in (2), and let o be the permutation determined by «
satisfying (3). By Lemma 1 (ii), for each u satisfying 1 < u < ¢, we have

C(Yk/n)f/" (l—u)=Sy(k+o(l—u),u),
where Sy (k,¢) is defined in (5). Then by Lemma 5

nEy [(C(Yk/n)"'/”(e - u))Q} =un—u+1) forl<u<¥,

so that
TZEQ -1 )
SEEG W”)] 2B |(Conynt= ]
(-1
=Y un—u+1)
u=1
=20 —1)(3n — 20+ 4),
as required. O

Notice that Theorem 2 arises as the special case £ = n of Proposition 12. Proposition 12 and
its consequence (12) still leave the possibility that, given an m-sequence Y of length n = 2™ — 1
and a real t € (0, 1], the asymptotic form of t2/F((Y;)!) varies as r ranges over [0,1]. However,
we now present numerical data showing that this is apparently not the case, therefore providing
further evidence in favour of Conjecture 9.

Let a be a primitive element of GF(2™), and let Y = (yo,¥1,.-.,Yn—1) be the m-sequence of
length n = 2™ — 1 given by (2), where 3 is chosen such that yo = y; =+ = y;m—1 = 1 (which can
be done uniquely by the run property of m-sequences; see [Gol67, p. 44, Thm. 4.2] for example).
We inspect the discrepancy

d(r,t) == — (1 - 2¢)

F((Y;)")
for
(r,t) € L:={0,1/64,2/64,...,1} x {1/64,2/64,...,1}.

We obtain the following example data for the maximum discrepancy on L:
0.018453 for n =2 — 1 using o'’ = a? +1
0.006677 for n =2% —1 using a® =a +1
max |d(r,t)| =

(rit)eL 0.001363 for n =219 —1 using a¥Y=a"+a2+a+1
0.000395 for n = 223 — 1 using a®3 = a® + 1.

The data show that the discrepancy apparently tends to zero with increasing length n. We observed
a similar behaviour for other choices for the primitive element c.

10



7 Comparison to Legendre Sequences
A Legendre sequence X = (xg,x1,...,Tn—1) of prime length n is defined for 0 < j < n by

{1 for j a square modulo n
xj =

—1 otherwise.

The asymptotic merit factor of a Legendre sequence was calculated for all periodic rotations by
Hgholdt and Jensen [HJ88].

Theorem 13 (Hgholdt and Jensen [HJ88|). Let X be a Legendre sequence of prime length n > 2,
and let v be a real number satisfying |r| < % Then
1 1 1)2
—————=z+38 —3).
lim F(X,) 5 +8(rl—3)
n—-am0o
The maximum asymptotic merit factor of a rotated Legendre sequence X, is 6, which occurs for
r= % and % and is the best proven asymptotic merit factor of a binary sequence family. Borwein,
Choi, and Jedwab [BCJ04] presented an analysis of the effect of appending for rotated Legendre
sequences, similar to the analysis for m-sequences given in Section 5. Extensive numerical data
for the behaviour of 1/F((X,)!) were presented, leading to a conjecture on its asymptotic form.
Using a result similar to Theorem 8, the authors of [BCJ04] showed that, subject to this conjecture,
lim,, 00 FI(X,; (X,)!) exists for all r,¢ € [0,1] and
max lim F(X,;(X,)") =G() forte]0,1],

re[0,1] n—00

where )
6(1+¢
L for0<t< %
1+ 18¢2 — 83
el = 6(1 +t)?
for 1 <t <1.
41204302 g3 r2=tS
We now compare this function with
3(1 +1)?
Ht) = ———— fortel0,1
() 1+9t2_2t3 or [7 ]7

which, subject to Conjecture 9, equals lim, .., F(Y;Y"), where Y is an m-sequence of length
n = 2™ — 1. The left plot of Figure 1 shows the graphs of G(¢) and H(t). The maximum of G(t)
in the interval ¢ € [0,1] is given by

G(tr) ~ 6.3420596 for i1, ~ 0.0578279,

and, as in Corollary 11, the maximum of H(¢) in the interval ¢ € [0, 1] is given by

H(ta) ~ 3.3420653 for i), ~ 0.1157494.

Surprisingly (to us), we find G(f) — 6 ~ H(fyr) — 3 and 2ff, ~ {5/, but certainly equality does not
hold. Indeed, the right plot of Figure 1 shows that G(t) — 6 and H(2t) — 3 have very similar graphs
in the range t € [0, %] It is doubtful these graphs could be distinguished for ¢ ~ 0.058 purely from
numerical data.

11



Figure 1: Comparison of the graphs of G(t) and H(t).
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