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Abstract

We consider the merit factor of binary sequences obtained by appending an initial fraction of
an m-sequence to itself. We show that, for all sufficiently large n, there is some rotation of each
m-sequence of length n that has merit factor greater than 3.34 under suitable appending. This
is the first proof that the asymptotic merit factor of a binary sequence family can be increased
under appending. We also conjecture, based on numerical evidence, that each rotation of an
m-sequence has asymptotic merit factor greater than 3.34 under suitable appending. Our results
indicate that the effect of appending on the merit factor is strikingly similar for m-sequences as
for rotated Legendre sequences.

1 Introduction

A binary sequence A of length n is an n-tuple (a0, a1, . . . , an−1), where each aj takes the value −1
or 1. The aperiodic autocorrelation of the binary sequence A at shift u is defined to be

CA(u) :=
n−u−1∑
j=0

ajaj+u for u = 0, 1, . . . , n− 1,

and, provided that n ≥ 2, its merit factor is

F (A) :=
n2

2
∑n−1

u=1 [CA(u)]2
.

The merit factor is important both practically and theoretically. For example, the larger the
merit factor of a binary sequence that is used to transmit information by modulating a carrier signal,
the more uniformly the signal energy is distributed over the frequency range; this is particularly
important in spread-spectrum communication [BCH85]. The merit factor of binary sequences is
also studied in complex analysis, in statistical mechanics, and in theoretical physics and theoretical
chemistry (see [Jed05] for a survey of the merit factor problem, and [Jed08] for a survey of related
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problems). The general objective is to understand the behaviour, as n −→∞, of the optimal merit
factor F (A) as A ranges over the set of all 2n binary sequences of length n.

The only non-trivial infinite families of binary sequences for which the asymptotic merit factor is
known are: Legendre sequences, m-sequences, Rudin-Shapiro sequences, and some generalisations
of these three families. The largest proven asymptotic merit factor of a binary sequence family is 6,
which is attained by rotated Legendre sequences (see Theorem 13).

There is considerable numerical evidence that an asymptotic merit factor greater than 6 can
be achieved [KN99], [KP04], [BCJ04]. The idea of [BCJ04], based on earlier work [KN99], is to
start with a near-optimal rotation of a Legendre sequence (which has asymptotic merit factor close
to 6) and append an initial fraction of the sequence to itself. Based on partial explanations and
extensive numerical computations, [BCJ04] exhibits a binary sequence family that apparently has
asymptotic merit factor greater than 6.34, although a proof for this has not yet been found.

In this paper we apply the idea of sequence appending to m-sequences and prove, for the
first time, that the asymptotic merit factor of a binary sequence family can be increased under
appending. The asymptotic merit factor of all m-sequences is known to equal 3 (see Theorem 3).
We show that, for all sufficiently large n, there is some rotation of an m-sequence of length n that
has merit factor greater than 3.34 under suitable appending. Our analysis makes critical use of
the “shift-and-add” property of m-sequences (see Lemma 1 (ii)). We also conjecture, based on
numerical evidence, that each rotation of an m-sequence has asymptotic merit factor greater than
3.34 under suitable appending. Our results reveal that the effect of appending is strikingly similar
for m-sequences as for rotated Legendre sequences; this is discussed in the final section of the paper.

2 Notation

In this section we introduce further definitions and notation for the paper.
Given a binary sequence A = (a0, a1, . . . , an−1) of length n, we denote by [A]j the sequence

element aj . Let A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bm−1) be binary sequences of length n
and m, respectively. The concatenation A;B of A and B is the length n+m binary sequence given
by

[A;B]j :=

{
aj for 0 ≤ j < n

bj−n for n ≤ j < n+m.

Let r and t be real numbers, where t ∈ [0, 1]. Following [BCJ04], the rotation Ar of A by a fraction r
of its length is the binary sequence of length n given by

[Ar]j := a(j+brnc) mod n for 0 ≤ j < n,

and the truncation At of A by a fraction t of its length is the binary sequence of length btnc given
by

[At]j := aj for 0 ≤ j < btnc.
We also use the standard definition of the periodic autocorrelation of the binary sequence A =
(a0, a1, . . . , an−1) at an integer shift u, namely

RA(u) :=
n−1∑
j=0

aja(j+u) mod n. (1)
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3 Properties of m-Sequences

This section provides background and some required results on m-sequences.
Let GF(2m) be the finite field containing 2m elements, and let Tr : GF(2m) → GF(2) be the

absolute trace function on GF(2m) given by

Tr(z) :=
m−1∑
j=0

z2j .

An m-sequence Y = (y0, y1, . . . , yn−1) of length n = 2m − 1 (for m ≥ 2) is defined by

yj := (−1)Tr(βαj) for 0 ≤ j < n (2)

for some primitive element α of GF(2m) and some nonzero element β of GF(2m). By writing β as
a power of α, it is seen that different choices for β correspond to different rotations of the sequence
defined by a particular β. This implies that each rotation of an m-sequence is an m-sequence,
as noted in Lemma 1 (i) below. For each n = 2m − 1, there are exactly nφ(n)/m distinct m-
sequences [GG05, Cor. 4.7], where φ is Euler’s totient function (there are n choices for β, and
φ(n)/m choices for α that arise by taking one representative of each conjugacy class of the φ(n)
primitive elements of GF(2m)).

We shall require the following properties of m-sequences (see [GG05] for a detailed modern
treatment; these properties were originally derived using an alternative definition of m-sequences
involving a linear recurrence relation [Gol67]).

Lemma 1. Let Y = (y0, y1, . . . , yn−1) be an m-sequence of length n = 2m − 1, as in (2).

(i) The rotated sequence Yr is an m-sequence for every real r.

(ii) ([Gol67, p. 44, Thm. 4.3]) There is a permutation σ of {1, 2, . . . , n − 1}, determined by the
primitive element α in (2), for which

yjy(j+u) mod n = y(j+σ(u)) mod n for 1 ≤ u < n and 0 ≤ j < n. (3)

(iii) ([Gol67, p. 45]) The periodic autocorrelation of Y satisfies

RY (u) =

{
n for u ≡ 0 (mod n)
−1 otherwise.

Given an m-sequence Y of length n, Sarwate [Sar84a] computed Ek[1/F (Yk/n)] (throughout
this paper, Ek denotes expectation over k ∈ {0, 1, . . . , n − 1}, where all such k occur with equal
probability).

Theorem 2 (Sarwate [Sar84a]). Let Y be an m-sequence of length n = 2m − 1. Then

Ek
[

1
F (Yk/n)

]
=

(n− 1)(n+ 4)
3n2

.
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As a consequence, there is some rotation of an m-sequence Y of length n having merit factor
at least 3n2/((n − 1)(n + 4)), which asymptotically equals 3. This suggests the possibility that a
particular rotation of an m-sequence has asymptotic merit factor greater than 3, but Jensen and
Høholdt [JH89] showed that this is impossible.

Theorem 3 (Jensen and Høholdt [JH89]). Let Y be an m-sequence of length n = 2m − 1. Then

lim
n−→∞

F (Y ) = 3.

(The limit in Theorem 3 is taken over all n of the form n = 2m − 1 (for m ≥ 2) and, for each such
n, one of the nφ(n)/m different m-sequences is selected. The theorem states that the limit of F (Y )
is always 3, regardless of which m-sequence is chosen for a particular n.)

We shall need an upper bound on the aperiodic autocorrelation of truncated m-sequences. Given
an m-sequence Y of length n = 2m − 1, Sarwate [Sar84b] established that

|CY (u)| ≤ 1 + 2
π

√
n+ 1 log

(
4n
π

)
for 1 ≤ u < n. (4)

We will now show that Lemma 1 (ii) implies that the same bound also holds for truncated m-
sequences.

Lemma 4. Let Y be an m-sequence of length n = 2m − 1, and let ` be an integer satisfying
2 ≤ ` ≤ n. Then

|CY `/n(u)| ≤ 1 + 2
π

√
n+ 1 log

(
4n
π

)
for 1 ≤ u < `.

Proof. Let α be the primitive element of GF(2m) appearing in the definition of Y = (y0, y1, . . . , yn−1)
given in (2), and let σ be the permutation determined by α satisfying (3). Now pick an integer u
satisfying 1 ≤ u < `. Applying Lemma 1 (ii) twice, we find that

CY `/n(u) =
`−u−1∑
j=0

yjyj+u

=
`−u−1∑
j=0

y(j+σ(u)) mod n

=
`−u−1∑
j=0

y(j+σ(u)−σ(n−`+u)) mod n y(j+σ(u)−σ(n−`+u)+n−`+u) mod n

= CYk/n(n− `+ u) for k = σ(u)− σ(n− `+ u).

Since Yk/n is an m-sequence by Lemma 1 (i), the result follows from (4).

4 An Existence Result on the Merit Factor of Appended
m-Sequences

In this section we prove a generalisation of Theorem 2 for appended m-sequences. We then conclude
that, for all sufficiently large m, given a primitive element α of GF(2m) there exists an m-sequence
Y of length n = 2m − 1 of the form (2) and a real number t such that F (Y ;Y t) > 3.34.

We begin by proving the following lemma on sums of elements of anm-sequence. This generalises
to all nonnegative integers δ a result previously given by Lindholm [Lin68, Eq. (6e)] for δ ≤ n.
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Lemma 5. Let Y = (y0, y1, . . . , yn−1) be an m-sequence of length n = 2m − 1. Given nonnegative
integers k and δ, define

SY (k, δ) :=
δ−1∑
j=0

y(k+j) mod n. (5)

Then
nEk[(SY (k, δ))2] = δ(n− δ + 1) + a(n+ 1) (2δ − n(a+ 1)) ,

where a = b δ−1
n c.

Proof. From the definition (5) of SY (k, δ) we have

nEk[(SY (k, δ))2] =
n−1∑
k=0

δ−1∑
i=0

δ−1∑
j=0

y(k+i) mod n y(k+j) mod n

=
δ−1∑
i=0

δ−1∑
j=0

RY (i− j)

by rearranging the summation and by the definition (1) of the periodic autocorrelation. Further
manipulations give

nEk[(SY (k, δ))2] =
δ−1∑

v=−(δ−1)

(δ − |v|)RY (v)

= δ RY (0) + 2
δ−1∑
v=1

v RY (δ − v)

since for every binary sequence A we have RA(v) = RA(−v) for all v. Now from Lemma 1 (iii) we
find that

nEk[(SY (k, δ))2] = δn− 2
δ−1∑
v=1

v + 2(n+ 1)
δ−1∑
v=1

v≡δ (mod n)

v

= δn− δ(δ − 1) + 2(n+ 1)
δ−1∑
v=1

v≡δ (mod n)

v. (6)

Writing a = b δ−1
n c, we have

δ−1∑
v=1

v≡δ (mod n)

v =
a∑
j=1

(δ − jn)

= aδ − 1
2na(a+ 1),

which after combination with (6) proves the lemma.
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We now apply the preceding lemma to prove the following result, in which the sequence
Yk/n; (Yk/n)`/n is obtained by rotating the m-sequence Y by k elements and then appending the
resulting first ` elements.

Theorem 6. Let Y be an m-sequence of length n = 2m − 1, and let ` be an integer satisfying
0 ≤ ` ≤ n. Then

Ek

[
1

F (Yk/n; (Yk/n)`/n)

]
=

(n+ `)(n+ `− 1)(n− 2`+ 4) + 12(n+ 1)`(`− 1)
3n(n+ `)2

.

Proof. Let α be the primitive element of GF(2m) appearing in the definition of Y = (y0, y1, . . . , yn−1)
given in (2), and let σ be the permutation determined by α satisfying (3). Then, by Lemma 1 (ii),
for each u satisfying 1 ≤ u < n+ ` and u 6= `, we have

CYk/n;(Yk/n)`/n(n+ `− u) =
u−1∑
j=0

y(k+j) mod n y(k+j+n+`−u) mod n

=
u−1∑
j=0

y(τ(k)+j) mod n

= SY (τ(k), u), (7)

where τ(k) := k + σ((n+ `− u) mod n) and SY (k, δ) is defined in (5). We also have

CYk/n;(Yk/n)`/n(n) = `, (8)

using the convention that CA(n) = 0 for all binary sequences A of length n. Now, since k 7→
τ(k) mod n is a permutation of {0, 1, . . . , n− 1} for each u, (8) and application of Lemma 5 to (7)
give

nEk
[(
CYk/n;(Yk/n)`/n(n+ `− u)

)2] =


n`2 for u = `

u(n− u+ 1) for 1 ≤ u ≤ n and u 6= `

u(n− u+ 1) + 2(n+ 1)(u− n) for n < u < n+ `.

We therefore obtain

Ek

[
n(n+ `)2

2F (Yk/n; (Yk/n)`/n)

]
=

n+`−1∑
u=1

nEk
[(
CYk/n;(Yk/n)`/n(n+ `− u)

)2]
=

n+`−1∑
u=1
u6=`

u(n− u+ 1) + n`2 +
n+`−1∑
u=n+1

2(n+ 1)(u− n)

= 1
6(n+ `)(n+ `− 1)(n− 2`+ 4) + 2(n+ 1)`(`− 1),

proving the theorem.
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Notice that Theorem 2 arises as the special case ` = 0 of Theorem 6. It follows from Theorem 6
that, for every m-sequence Y and integer ` satisfying 0 ≤ ` ≤ n, there exists an integer k such that

F (Yk/n; (Yk/n)`/n) ≥ 3n(n+ `)2

(n+ `)(n+ `− 1)(n− 2`+ 4) + 12(n+ 1)`(`− 1)
.

Writing t = `
n , taking the infimum limit as n −→∞, and using Lemma 1 (i), we obtain the following

asymptotic result.

Corollary 7. Let t ∈ [0, 1] be a real number. For each integer m and for each primitive element
α of GF(2m), there exists a nonzero β ∈ GF(2m) such that the m-sequence Y of length n = 2m− 1
defined in (2) satisfies

lim inf
n−→∞

F (Y ;Y t) ≥ 3(1 + t)2

1 + 9t2 − 2t3
.

In particular,

lim inf
n−→∞

F (Y ;Y t) > 3.3420653 for t = 0.1157494.

The second statement in the corollary implies that, for all sufficiently large m, given a primitive
element α of GF(2m), we can pick an m-sequence Y of length n = 2m− 1 of the form (2) such that
F (Y ;Y t) > 3.34 for t = 0.1157494.

5 A Conjecture on the Merit Factor of Appended m-Sequences

The results of the previous section imply that, for each sufficiently large n = 2m− 1, we can choose
an m-sequence Y of length n such that the maximum of F (Y ;Y t) over t ∈ [0, 1] is greater than
3.34. In this section and in the following section we shall present compelling evidence, and therefore
conjecture, that

lim
n−→∞

F (Y ;Y t) =
3(1 + t)2

1 + 9t2 − 2t3
for t ∈ [0, 1), (9)

regardless of the choice of the m-sequence Y for each particular n. Subject to this conjecture, the
asymptotic maximum of F (Y ;Y t) over t ∈ [0, 1) is approximately 3.34, regardless of the choice of
the m-sequence Y for each particular n.

We shall first prove the following theorem, which allows us to replace the conjecture (9) by
a simpler one. A result similar to Theorem 8, namely [BCJ04, Thm. 6.4], is known to hold for
Legendre sequences.

Theorem 8. Let Y be an m-sequence of length n = 2m − 1, and let t ∈ (0, 1) be a real number.
Then, as n −→∞,

1
F (Y ;Y t)

∼ 2
(

t

1 + t

)2( 1
F (Y t)

+ 1
)

+
(

1− t
1 + t

)2 1
F ((Yt)1−t)

.
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Proof. Write Y = (y0, y1, . . . , yn−1) and ` := btnc. By definition we have Y t = (y0, y1, . . . , y`−1).
Now define Y ′ = (y`, y`+1, . . . , yn−1), so that Y = Y t;Y ′. Then by the definition (1) of the periodic
autocorrelation we have

CY ;Y t(u) =



RY (u) + CY t(u) for 1 ≤ u < `

RY (`) for u = `

RY (u)− CY ′(n− u) for ` < u < n

` for u = n

CY t(u− n) for n < u < n+ `.

In what follows, we will assume that n is large enough such that 2 ≤ ` ≤ n− 2, in which case all of
the above ranges for u are nonempty. Since by Lemma 1 (iii), RY (u) = −1 for 1 ≤ u < n, we then
obtain

(n+ `)2

2F (Y ;Y t)
=

n+`−1∑
u=0

[CY ;Y t(u)]2

=
`−1∑
u=1

[CY t(u)− 1]2 + 1 +
n−`−1∑
u=1

[CY ′(u) + 1]2 + `2 +
`−1∑
u=1

[CY t(u)]2

=
`2

F (Y t)
+

(n− `)2
2F (Y ′)

+ `2 + n− 1− 2
`−1∑
u=1

CY t(u) + 2
n−`−1∑
u=1

CY ′(u). (10)

Now by comparing Y ′ with (Yt)1−t, we find that

Y ′ =

{
(Yt)1−t if tn is integer
(Yt)1−t; yn−1 otherwise.

This gives ∣∣CY ′(u)− C(Yt)1−t(u)
∣∣ ≤ 1 for 0 ≤ u < n− ` (11)

with the convention that CA(s) = 0 for each length s binary sequence A. Thus, since Yt is an
m-sequence, we conclude from Lemma 4 that the last two sums in (10) are O(n

3
2 log n) as n −→∞.

Also from (11) and Lemma 4 we find that, as n −→∞,

(n− `)2
2F (Y ′)

=
(b(1− t)nc)2
2F ((Yt)1−t)

+O(n
3
2 log n).

Hence, since ` ∼ tn, we obtain from (10) the asymptotic relationship

(1 + t)2n2

2F (Y ;Y t)
∼ t2n2

F (Y t)
+

(1− t)2n2

2F ((Yt)1−t)
+ t2n2,

as required.

Theorem 8 and Lemma 1 (i) imply that, in order to find the asymptotic merit factor of an
appended m-sequence Y ;Y t for all t ∈ (0, 1), it is sufficient to know the asymptotic value of
t2/F (Zt) for all m-sequences Z and for all t ∈ (0, 1). Numerical computations suggest that, for
each long m-sequence Y , the curve 1/F (Y t) for t ∈ (0, 1] can be fitted very well by a linear function.
This leads us to the following conjecture.
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Conjecture 9. Let Y be an m-sequence of length n = 2m − 1, and let t ∈ (0, 1] be a real number.
Then, limn→∞(t2/F (Y t)) is well-defined and

lim
n−→∞

t2

F (Y t)
= t2(1− 2

3 t).

We now use Theorem 8 to show that the conjectured asymptotic form (9) of the merit factor
of appended m-sequences is implied by Conjecture 9.

Corollary 10. Let Y be an m-sequence of length 2m− 1, and let t ∈ [0, 1) be a real number. Then,
subject to Conjecture 9,

lim
n−→∞

F (Y ;Y t) =
3(1 + t)2

1 + 9t2 − 2t3
.

Proof. The case t = 0 follows directly from Conjecture 9 (and is known to be correct by Theorem 3).
Subject to Conjecture 9 we conclude from Theorem 8 that, for t ∈ (0, 1),

lim
n−→∞

F (Y ;Y t) =
(1 + t)2

2t2(1− 2
3 t+ 1) + (1− t)2(1− 2

3(1− t)) ,

which proves the corollary.

Under the assumption that Conjecture 9 is correct, elementary calculus gives the maximum
asymptotic merit factor achievable by appending to m-sequences.

Corollary 11. Let Y be an m-sequence of length n = 2m − 1, and assume Conjecture 9 to be
correct. Then the maximum of limn→∞ F (Y ;Y t) over t ∈ [0, 1) is given by

lim
n−→∞

F (Y ;Y t̂) =
3(1 + t̂)2

1 + 9t̂2 − 2t̂3
,

where t̂ is the solution of
t3 + 3t2 − 9t+ 1 = 0 for 0 < t < 1.

Approximately we have

lim
n−→∞

F (Y ;Y t̂) ' 3.3420653 and t̂ ' 0.1157494.

6 Evidence in Favour of Conjecture 9

Conjecture 9 implies that, given an m-sequence Y of length n = 2m − 1,

Ek
[

t2

F ((Yk/n)t)

]
∼ t2(1− 2

3 t) for t ∈ (0, 1] as n −→∞. (12)

This asymptotic relation is implied by setting ` = tn and letting n −→ ∞ in the following result,
which therefore provides evidence in favour of Conjecture 9.

Proposition 12. Let Y be an m-sequence of length n = 2m − 1, and let ` be an integer satisfying
2 ≤ ` ≤ n. Then

Ek

[
1

F ((Yk/n)`/n)

]
=

(`− 1)(3n− 2`+ 4)
3n`

.
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Proof. The proof is similar to that of Theorem 6. Let α be the primitive element of GF(2m)
appearing in the definition of Y given in (2), and let σ be the permutation determined by α
satisfying (3). By Lemma 1 (ii), for each u satisfying 1 ≤ u < `, we have

C(Yk/n)`/n(`− u) = SY (k + σ(`− u), u),

where SY (k, δ) is defined in (5). Then by Lemma 5

nEk
[(
C(Yk/n)`/n(`− u)

)2] = u(n− u+ 1) for 1 ≤ u < `,

so that

Ek

[
n`2

2F ((Yk/n)`/n)

]
=

`−1∑
u=1

nEk
[(
C(Yk/n)`/n(`− u)

)2]
=

`−1∑
u=1

u(n− u+ 1)

= 1
6`(`− 1)(3n− 2`+ 4),

as required.

Notice that Theorem 2 arises as the special case ` = n of Proposition 12. Proposition 12 and
its consequence (12) still leave the possibility that, given an m-sequence Y of length n = 2m − 1
and a real t ∈ (0, 1], the asymptotic form of t2/F ((Yr)t) varies as r ranges over [0, 1]. However,
we now present numerical data showing that this is apparently not the case, therefore providing
further evidence in favour of Conjecture 9.

Let α be a primitive element of GF(2m), and let Y = (y0, y1, . . . , yn−1) be the m-sequence of
length n = 2m − 1 given by (2), where β is chosen such that y0 = y1 = · · · = ym−1 = 1 (which can
be done uniquely by the run property of m-sequences; see [Gol67, p. 44, Thm. 4.2] for example).
We inspect the discrepancy

d(r, t) :=
t2

F ((Yr)t)
− t2(1− 2

3 t)

for
(r, t) ∈ L := {0, 1/64, 2/64, . . . , 1} × {1/64, 2/64, . . . , 1}.

We obtain the following example data for the maximum discrepancy on L:

max
(r,t)∈L

|d(r, t)| =


0.018453 for n = 211 − 1 using α11 = α2 + 1
0.006677 for n = 215 − 1 using α15 = α+ 1
0.001363 for n = 219 − 1 using α19 = α5 + α2 + α+ 1
0.000395 for n = 223 − 1 using α23 = α5 + 1.

The data show that the discrepancy apparently tends to zero with increasing length n. We observed
a similar behaviour for other choices for the primitive element α.
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7 Comparison to Legendre Sequences

A Legendre sequence X = (x0, x1, . . . , xn−1) of prime length n is defined for 0 ≤ j < n by

xj :=

{
1 for j a square modulo n
−1 otherwise.

The asymptotic merit factor of a Legendre sequence was calculated for all periodic rotations by
Høholdt and Jensen [HJ88].

Theorem 13 (Høholdt and Jensen [HJ88]). Let X be a Legendre sequence of prime length n > 2,
and let r be a real number satisfying |r| ≤ 1

2 . Then

1
lim

n−→∞
F (Xr)

= 1
6 + 8

(|r| − 1
4

)2
.

The maximum asymptotic merit factor of a rotated Legendre sequence Xr is 6, which occurs for
r = 1

4 and 3
4 and is the best proven asymptotic merit factor of a binary sequence family. Borwein,

Choi, and Jedwab [BCJ04] presented an analysis of the effect of appending for rotated Legendre
sequences, similar to the analysis for m-sequences given in Section 5. Extensive numerical data
for the behaviour of 1/F ((Xr)t) were presented, leading to a conjecture on its asymptotic form.
Using a result similar to Theorem 8, the authors of [BCJ04] showed that, subject to this conjecture,
limn→∞ F (Xr; (Xr)t) exists for all r, t ∈ [0, 1] and

max
r∈[0,1]

lim
n−→∞

F (Xr; (Xr)t) = G(t) for t ∈ [0, 1],

where

G(t) =


6(1 + t)2

1 + 18t2 − 8t3
for 0 ≤ t ≤ 1

2

6(1 + t)2

4− 12t+ 30t2 − 8t3
for 1

2 ≤ t ≤ 1.

We now compare this function with

H(t) =
3(1 + t)2

1 + 9t2 − 2t3
for t ∈ [0, 1],

which, subject to Conjecture 9, equals limn→∞ F (Y ;Y t), where Y is an m-sequence of length
n = 2m − 1. The left plot of Figure 1 shows the graphs of G(t) and H(t). The maximum of G(t)
in the interval t ∈ [0, 1] is given by

G(t̂L) ' 6.3420596 for t̂L ' 0.0578279,

and, as in Corollary 11, the maximum of H(t) in the interval t ∈ [0, 1] is given by

H(t̂M ) ' 3.3420653 for t̂M ' 0.1157494.

Surprisingly (to us), we find G(t̂L)− 6 ' H(t̂M )− 3 and 2t̂L ' t̂M , but certainly equality does not
hold. Indeed, the right plot of Figure 1 shows that G(t)− 6 and H(2t)− 3 have very similar graphs
in the range t ∈ [0, 1

8 ]. It is doubtful these graphs could be distinguished for t ' 0.058 purely from
numerical data.
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Figure 1: Comparison of the graphs of G(t) and H(t).
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